

Contents

Introduction 2
Let’s dive into the journey . 2

Programming Skills 5
Know what you must master as a programmer to think beyond 5

Why Linguistics and Cognitive Intelligence are so important for programming 8
About Linguistics . 8
About Cognitive Intelligence . 10

1

Introduction

Let’s dive into the journey

Hi. Probably you are considering to start a career as a DevOps Engineer or maybe already have experi-
ence in this position. In the modern era we are living now, with a plethora of options and abundant
information on the Internet about this topic, maybe you will face some difficulties about how to start
from scratch or developing all skills required to perform with excellence, gluing all knowledge and
having a holistic view of all you need to learn and improve.

With the creation and implementation of the concept called Ubiquitous Computing by mobile devices
(tables, smartphones, IoT devices and so on) most of the Computer Science fundamental knowledge
has been abstracted in frameworks of all types for mobile applications to frontend / backend systems
and even Operational Systems. Despite we don’t need to worry about low-level implementations
like handling C pointers and stuff like that in old times, it is causing a side effect: the foundation of
Computation and Programming basic skills are being affected by the abstractions these frameworks
and tools does for the programmer. The abstraction level has reached a limit which we even don’t
know what the operational system file system runs in some of these devices, all we need to do is simply
have experience with a framework to do the job using libraries and techniques on the scope of the tool
we use. That said, you need to develop your Programming Skills in some order to not be hostage to
the tools you use.

In the first glance maybe you think I’m against modern frameworks, tools and libraries we use today.
On the contrary, I am an evangelizer of most of all this apparatus; for example I use frameworks like
Ruby on Rails for my personal projects, Terraform to handle infrastructure and others tools. Since 2000,
when I started writing code, I can see how useful and battlefield proven these tools are to save time. In
the LAMP golden era, I knew how manual was the effort to set up a Linux instance to run this stack. You
needed to use hosting solutions or maybe configure an on-premise server or even a Virtual Machine
to run your WordPress webpage. With the advance of Configuration Management tools, we found a
gold pot to finally setup servers in an organized, secure and predictable way. If you write a good code
using the combination of Terraform, Packer and Ansible you can bootstrap your LAMP server in a few
minutes in the cloud, if you do not decide to use a 100% managed service. But the Automation is just
one of the required skills you must master.

OK, just configuring a LAMP server is not enough. You need to develop one of the most underrated
but critical skills called Troubleshooting. Let’s suppose your MySQL database on your LAMP stack
suddenly started to loss performance for an unknown reason; how you will fix it? There are questions
we must ensure if is some SQL query that are degrading the server, out of memory, network bottlenecks,
file system failure (yes, it occurs) or even a bug in your database server (personally I faced issues like
that). How you can detect every problem I described? You need to develop your operational system

2

skill set to see the current status of the CPU/RAM, file system, application / database / OS logs, network,
debug applications and so on. To master troubleshooting, you need to take the hand of a reasonable
checklist and proceedings to help you in at least a little bit when something goes wrong at Saturday
late evening, and you are on-call.

Well, nobody likes to wake up with smartphones screaming like police sirens if your application goes
down. You can predict strange behaviors in your systems using Monitoring tools and techniques
to being warned in a good time window to prevent an incident. But monitoring is not about only
metrics, you need to create a holistic approach to generate meaningful metrics. You can (or better,
must) instrumentalize your application to send both business metrics - let’s suppose a number of
successful subscriptions in your webpage - and behavioral metrics like the amount of CPU and RAM
used, network latency for specific API calls and so on.

The great value of these metrics gives you the opportunity to go one step beyond called Observability.
The DORA (DevOps Research and Assessment) research describes it as a tooling / technical solution to
proactively debug and monitor your system. It helps you to measure key business metrics in order
to make decisions - i.e a launched feature is being used or not - and overall system metrics to detect
outages, unauthorized activities and so on. Here enters some of the most famous keywords like SLA,
TTR and others we will cover in this book.

OK, it sounds good, but we didn’t finish yet the required skills to be a great DevOps Engineer. Let’s
dive deep back into the programming skills to approach the most important skill you must have in
your Swiss knife: Systems Architecture. Again, I will share my experience in this field to give you an
example. When I worked as a Java programmer in my hometown a long time ago, I felt that bad gut
feeling that everything you need to solve you must use Java libraries or tools written in this language.
OK, we know the immense value of the Java Virtual Machine aka JVM, but the world is not moved
by stateful applications, thread pools and database tables being used as queues or some sort of
messaging. In the rise of Distributed Systems as we know today, we notice that we can compute
things in asynchronous way without losing performance, or better: we can improve a lot. It may
sound strange, but web sockets gave us a totally new approach to develop resilient, high available
systems. Of course, several communities like Ruby, Python and others contributed with a ton of tools
to reach asynchronous processing, from Apache Kafka message broker to Sidekiq, the famous Ruby
asynchronous job scheduler. The born of NoSQL databases like MongoDB, Redis, GraphQL and others
gave us the wisdom to use the right tool for the feature you want to develop or that annoying bug
you need to fix. But, in the other side, using these tools just for the sake of hype can literally destroy
your application or even worse, your business. You need to create a mind system to proper elect the
libraries, tools, databases and other systems from the early beginning of your project to get a good
balance in order to deliver an MVP or improve a legacy ecosystem.

Another crucial skill you must master is Software Distribution. This topic is immense, and we will

3

https://cloud.google.com/architecture/devops/devops-measurement-monitoring-and-observability

cover it as an entire chapter in this book, but to give you a little taste I will explain how hard was this in
my times of C# and Ruby programming. For the famous Windows programming language, you needed
to make a build in your local machine to generate a package (commonly a zip file with a few DLL’s) to be
deployable in the famous Windows IIS Server. In the other side (the sysadmin one), we had a teammate
responsible to unzip these DLL’s in some folder, copy them to the IIS folder structure, restart the IIS
application and literally cross fingers to not break anything. With Ruby, I faced several deployment
issues related with the famous it works on my machine provided by libraries installed in the developer’s
computer but not in the production server, causing a lot of rollbacks. To avoid the problematic rollbacks,
I wrote a Ruby library called gordon to package our Ruby apps to be Debian compatible using .deb files
(this library can generate RPM packages as well), based on a set of curated sysadmin conventions in a
way you can simply install the application using sudo apt-get install app=1.2.3, execute
a sudo service app restart and voilà, our app is up and running. Today, you don’t need
to do all the work of maintaining an APT or RPM repository server and package apps; Docker has
revolutionized the way we distribute software today. All you need is a Docker base image, install a
few packages (oh, look here the APT / RPM repositories still delivering software releases today), make
additional steps in your Dockerfile and push the image to Docker Hub or a private Docker repository
in a cloud provider. That said, if you want to master this skill, you must have experience with the
traditional repo-based package distribution and how to Dockerize your applications.

To complete this journey, you want to deliver software as fast you can get. In a world of instant
gratification, you must be agile enough to deliver a product from scratch and incrementally improve
it based on the needs of your audience if you want to create a digital product or a new system to
replace some legacy stuff. Here enters the holy Continuous Integration / Continuous Delivery best
practices. This topic is huge and will be covered in this book, so I will be short here. In the old days of
programming, how we ensure if a feature is working? By starting up a local copy of the application
source code by using an IDE or maybe a Shell script, navigate into the feature we want to deliver
or the bug we want to fix, finish it and take a look on the database to ensure if our updated code
works. Of course, this was a very manual process that tends to be flawless at any moment. It was
common forgetting to deliver a SQL script to create some additional tables when we tried to deploy into
production, causing a lot of frustration and chaos when your deployment doesn’t have any possibility
to roll back to the previous state. Supposing our deployment was successfully made into production
in terms of installation / setup, how we can prove everything is OK? Navigating into the feature / bug
fix flow, making some CRUD operations. . . manually. With CI / CD, we can automate all this boring
or critical business / system requirements in a pipeline that at least ensure your software is proper
covered by Unit Tests, Acceptance Tests and - depending on how mature your software cycle is - you
can even automate the deployment in an on-premise server, a cloud VM or a Serverless platform. To
reach the excellence being a DevOps Engineer, having a solid knowledge and experience with CI / CD is
mandatory.

4

Probably you be surprised how long this journey can be, and it is in fact. I must tell you, based on
my DevOps Engineer career, it’s one of the toughest professions I ever saw in my life. You need to
be in touch what is happening now in both Development and Operations side, following the latest
features provided by Cloud providers, new languages like Rust and V, new NoSQL databases popping
up; you must be well-informed about the actual stack the market adopted. Take a look at Kubernetes
for example; I saw the evolution of this container orchestration tool since 2016 until he won the battle
against Docker Swarm, rkt and others. From AWS EC2 instances in Auto Scaling Groups until the ECS
Fargate, a 100% managed container orchestration solution. That’s a ton of content to develop and
master. Being a DevOps Engineer is raising the bar up all the time to keep your experience sharp
enough to attend the market requirements.

But don’t worry how so long is this journey. Instead of exploding your head, enjoy the knowledge
path. It is worth the effort, if you love to write code and deliver things with high quality and value. I
guarantee that one of the most satisfying joys of life is writing an API from scratch and orchestrate
everything I highlighted here in a Continuous Deployment pipeline. Come with me.

“I maintain that truth is a pathless land, and you cannot approach it by any path whatsoever, by
any religion, by any sect.”

Jiddu Khrisnamurti

Programming Skills

Know what you must master as a programmer to think beyond

Before digging into what really matter, I want to share my professional experience as a programmer to
give you some insights.

I never had a computer in my childhood or adolescence. My first real contact with computers was in
the high school, when we made some classwork that required to make some research on the internet.
My first job was a graphic designer, using Adobe Photoshop and CorelDRAW and sometimes Adobe
Page Maker; notice I didn’t have any contact with programming languages before. After looking at my
hometown job opportunities newspaper, I applied for a job to work with Macromedia Flash as a Web
Designer. After getting the job, things became interesting.

It was 2000, in the emerging boom of e-commerce websites and hot sites using Macromedia Flash.
Because we had only dial-up connections using modems with a peak of 128kbps, generating small SWF’s
(the Flash output file) was critical to deliver a good user experience for our customers. I notice some
animations can be programmatically created instead of using Macromedia Flash object animations on
the IDE, using ActionScript - an embedded script programming language very similar to JavaScript to

5

compute things. On that time, I started to learn how to write ActionScript code to decrease the size
of the SWF’s file size by applying some techniques that evolved algebra and some physics functions.
Fortunately, I generated SWF file’s sometimes 50% or even 60% smaller than the original one by
using ActionScript programming instead of generating layers of animations, so the effort make a huge
worth.

OK, sounds good but what the hell this has any connection with programming skills? Well, now I
must show you one of the most famous and simple mathematics function of all time: the Fibonacci
Sequence.

1 F(0) = 0, F(1) = 1
2 and
3 F(n) = F(n - 1) + F(n - 2)
4 for n > 1

If you never had contact with Fibonacci Sequence, I strongly recommend you to have a minimal
knowledge of high school foundational mathematics to proceed as a programmer. It’s a must-have
skill you need to develop. Unfortunately, I notice that in the last decades the quality of high schools
and even universities was dramatically decreased in a way that we need to revisit the fundamental
mathematics with recent college graduates to mentoring them in programming languages. I’m not
talking about Calculus, Physics and Statistics here; of course if you develop these skills it will be great
to solve problems in code using algorithms and formulas from these fields, but before that you really
need to understand the mechanisms of mathematical functions. The good news is: this is not so
complicated.

That said, let’s dissect the Fibonacci Sequence. If you pass zero, it will return zero. If you pass one, it
will return one. For two and bigger numbers, you will see what we commonly say in the Computer
Programming universe as recursive function calls. We will brief it later, but the greatest tip I must tell
you is: notice the patterns.

The art of programming and using terminal commands are in fact:

You provide an input, the computer process it and gives you an output that you want.

It may sound weird, but the cornerstone to be a good programmer is to mastering the use of functions.
Whatever programming language paradigm you want or need to use, it’s all about calling functions
that will give you an output based on your needs. Let’s dive into this Java code snippet of the famous
Hello World below:

1 class HelloWorld {
2 public static void main(String[] args) {
3 System.out.println("Hello, World!");
4 }
5 }

6

Abstract class HelloWorld for a while, we will discuss it later in this chapter. Take attention to the
following line: public static void main(String[] args). For Java, you need to declare
the method in order to execute a program. OK, in this code you can pass an array of String’s to process
it in your Java application, but pay attention to the pattern. I will give you another code snippet to
train your brain to learn patterns; let’s look at the Fibonacci Sequence written in Elixir:

1 defmodule FibonacciGenerator do
2 defp comp_fib(0), do: [0 | 0]
3 defp comp_fib(1), do: [1 | 0]
4
5 defp comp_fib(n) do
6 [h | t] = comp_fib(n-1)
7 [h+t | h]
8 end
9

10 def calculate(n), do: hd(comp_fib(n))
11 end

Again, abstract what defp is in practice. But what you will have in common? A function call. - in this
case calculate and comp_fib. In Elixir, we have a great feature called Pattern Matching, that I will
cover briefly later - this language uses the Functional Programming Paradigm. But notice that all code
snippets you see here are basically function calls programmatically speaking. Do you want another
example? Let’s dive into the arcane programming language Turbo Pascal with the same Fibonacci
Sequence function implemented:

1 program fibonacci;
2
3 function fib(n: integer): integer;
4 begin
5 if (n < 2) then
6 fib := n
7 else
8 fib := fib(n-1) + fib(n-2);
9 end;

10
11 var
12 i:integer;
13
14 begin
15 for i := 0 to 16 do
16 write(fib(i), ', ');
17 writeln('...');
18 end.

Abstract the noisy Turbo Pascal syntax and take a look at function fib(n: integer):
integer line. Again, another function call with a minor changes compared with the Elixir code
snippet. Turbo Pascal is a Procedural Programming Language, what implies you to explicit declare

7

your code in a structured order to compile it and generate a binary; this is why it looks weird compared
with the Java Hello World code snippet.

Probably you are asking yourself why I’m mixing a Hello World and Fibonacci Sequence algorithms in
different languages to explain how programming works. There’s a reason behind it and I will explain
now, so reflect and internalize what I will say:

Computer Programming is a set of skills that blends mathematics, logic, linguistics and
cognitive intelligence.

Why Linguistics and Cognitive Intelligence are so important for
programming

About Linguistics

My first programming language was ActionScript, when I did the optimizations I told you a few para-
graphs ago. In my career, I got contact with these languages in the exact order since 2000:

• Macromedia ActionScript
• ASP (Microsoft Active Server Pages)
• PHP
• Macromedia ColdFusion
• Turbo Pascal
• Visual Basic 6
• Assembly x86
• C#
• Java
• C
• C++
• Prolog
• Common Lisp
• Python
• Ruby
• Golang
• Erlang
• Clojure
• Rust
• Elixir

8

• Lua
• Haskell

It sounds madness, but I wrote code using these languages since I started working as a programmer
(and I did not quote databases and other tools). Despite my graduation gives me some advice about
the nature of some languages quoted above, knowledge about the fundamental best practices writing
code, developing / fixing real code teaches me a lot in an imaginable order of magnitude compared
with my old days at the university. Being exposed to real software is one of the best tips I give to you,
whatever language it is. You must master the ability of winning challenges by stepping out of your
comfort zone and fixing a critical bug in an unknown language. Of course, this is a hard to swallow pill,
but it’s a liberating one.

Approach programming languages as an idiom you want to learn. In fact, despite I tried to find some
researches in this field with no success, I notice the best programmers I got the opportunity to work
with were polyglots in idioms and/or programming languages. They are more prolific in a programming
language of choice, but they were capable of solving complex problems / develop features using not
only one, but two or more programming languages if needed. If you stop to think, today a modern
programmer must know what TypeScript is for the frontend and Node.js for the backend one. Despite
both uses JavaScript behind the scenes, they are completely different in syntax. OK, you can see a mix
of pure JavaScript inside TypeScript code because this is a super-set language, but in practice we are
dealing with two different idioms. If you want a simpler example, consider Ruby on Rails in the frontend
consuming Golang backends, it’s very common to see today this kind of language’s blending when
launching a digital product. You must be prepared to work with this plethora of frontend / backend
technologies and be adaptive, making right decisions in your architecture to scale up your system and
measuring what is the best to the problem you need to solve wisely.

That said, if you want to develop your linguistics skills, be exposed to different idioms. If you speak
English, start learning Dutch and German later. You will see some patterns along these languages with
time, what will teach you in all sides. If possible, challenge yourself with a non-western language like
Ukrainian, Czech or Serbian. For Cyrillic derivate languages, you need to transliterate every word in
the character symbol’s table to get the word in slavonic-like idiom, and now you need to translate it.
It’s a double-step proceed to learn the language and I confess that it will burn up your brain in the first
moment, but as everything in life you must practice being prolific with. I strongly suggest you to learn
a new idiom to improve your programming skills.

Probably you will ask why I’m suggesting learn a new idiom. It’s simple: treat every language as an idiom.
There are idioms that some words are easy, others that the word is complicated a lot - specially when
dealing with German. But every idiom has their way to express words, and programming languages are
just a way to express solutions by writing code based on the input -> output flow I mentioned before.
Some languages, depending on how mature / robust their std (Standard) libraries are, will give you an

9

easy path to write an algorithm; another must be more verbose because the design they approached
requires it to be is. That’s why you see some implementations of code that are very short in some
languages compared with all the Java verbosity you must create to deliver the same solution.

About Cognitive Intelligence

Cognition, by definition, is the ability to get knowledge based on the conditions in the environment you
belong. Cognitive Ability is the aptitude everyone haves to individually interpret and take decisions
based on their overall knowledge developed by your cognition capacity. Cognitive Intelligence is, in a
short description, a tool set of thinking ability, abstraction, reasoning, memory, language, creativity
and problem-solving.

Most of the challenges in Computer Science that tests you are basically composed by algorithms to
be used, the overall architecture your systems will run and your ability to convert business features
into source code. I’m not talking about building complex real-time software like rockets, avionics and
military defense weapon software for missiles, but the mundane daily work to be made. If you want to
launch a digital product, your Cognitive Intelligence will be put to the test in all these fronts:

• Algorithms
• Software Architecture
• Infrastructure
• Business Requirements
• Minimum Viable Product (aka MVP)

That said, you must blend all these knowledge fields all the time to write source code. If you have time
enough to study better on this field, I recommend taking a look at the legacy of Jean Piaget in the
Theory of Cognitive Development he wrote. He not only created an entire science field called Genetic
Epistemology, but also inspired Seymour Papert by his thinking approach to develop an educational
programming language called Logo. I strongly recommend you to increase your Cognitive Intelligence
having contact with all fronts I mentioned above in a daily basis, developing one by one during your
career as a DevOps Engineer. It’s part of the job to wear a lot of hats in these knowledge topics but,
taking one step a time to avoid burnout, you will create a holistic way of thinking that you will be
grateful of and will speed up your productivity.

Now it’s time to hands on start practicing.

10

https://en.wikipedia.org/wiki/Jean_Piaget
https://en.wikipedia.org/wiki/Piaget%27s_theory_of_cognitive_development
https://en.wikipedia.org/wiki/Genetic_epistemology
https://en.wikipedia.org/wiki/Genetic_epistemology
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/Logo_(programming_language)

	Introduction
	Let’s dive into the journey

	Programming Skills
	Know what you must master as a programmer to think beyond

	Why Linguistics and Cognitive Intelligence are so important for programming
	About Linguistics
	About Cognitive Intelligence

